

The Modbus RTU to Profibus gateways, the T511 and T510 Reference Manual

Page

TABLE OF CONTENTS

1.		T511	. 4
	1.1.	Functional Description	. 4
	1.2.	Installation	. 7
	1.3.	Electrical Connections	. 7
	1.4.	Slide switches and DIP switches	. 8
	1.4.1.	Modbus termination	. 8
	1.4.2.	DP termination	. 9
	1.4.3.	DIP switches	. 9
	1.4.4.	Programming utility	. 9
	1.5.	Power, Termination and Diagnostic LEDs	. 9
	1.6.	Setting Profibus address	10
2.		T510	11
	2.1.	Functional Description	11
	2.2.	Installation	14
	2.3.	Electrical Connections	14
	2.4.	Slide switches and DIP switches	15
	2.4.1.	Modbus termination	15
	2.4.2.	PA termination	15
	2.4.3.	DIP switches	15
	2.4.4.	Programming utility	15
	2.5.	Power, Termination and Diagnostic LEDs	16
	2.6.	Setting Profibus address	16
3.		GSD FILES	17
	3.1.	GSD file, T51x	17
4.		MECHANICAL DIMENSIONS OF T51x	18
5.		OPERATION PRINCIPLE OF T51x	19
	5.1.	Connecting Modbus devices	19
	5.2.	Setting up the Modbus	
	5.3.	Channel communication services	21
	5.3.1.	Set-up of PV	
	5.3.2.	Diagnosis	
	5.3.3.	Transparent Read/Write services	29
	5.3.4.	Input data block	30
	5.3.5.	Output registers	
6.		APPENDIX A: TECHNICAL SPECIFICATIONS	34
7.		APPENDIX B: SCHEDULE	35
8.		APPENDIX C: CONFIGURATION CODES	36

About this document

The Reference Manual gives an overview of the capabilities and the use of the T510 and the T511 DIN rail mounted generic Profibus gateways. Furthermore, it explains how to configure the device.

The following abbreviations are used in this document:

DPV1	Extended functions in Profibus DP that allow acyclic communication for parameter configuration. DP is traditionally only suited for transfer of measured variables.
MSAC1	Acyclic communication services from a Master Class 1 (PLC).
MSAC2	Acyclic communication services from a Master Class 2 (configurations station)
PV	Primary dynamic variable in the transmitter
SV	Secondary dynamic variable in the transmitter
GSD file	Data sheet that describes the behavior of the device on Profibus, like data- rates, dynamic variables etc. A Master Class 1 uses the GSD file to start cyclic communication with the instrument.
IDENT_NO	A type number for a Profibus device. The GSD file describes the
	communication capabilities of a device type and is the description of the capabilities that are related to a particular IDENT_NO. The allocation of
	IDENT_NO is administered by PI.
PI	Profibus International
DD	Device description
TB	Transducer Block
PB	Physical Block
FB	Function Block
RB	Resource Block
PA	Profibus PA
DP	Profibus DP
PDM	Simatic Configuration tool
CRC	Cyclic redundancy check. Check bits that ensures that bit errors are detected.
NAMUR NE107	Standard for Field Diagnostics
PLC	Control or monitoring system

Summary

The T510, handling Profibus PA, and the T511, handling DP, have many common properties and therefore it is convenient to cover the two devices, named T51x, with only one, single Reference manual.

The common capabilities of T51x can be summarized as follows:

- Interfaces up to four Modbus RTU devices to Profibus
- Standard Profibus PA 3.02 profile
- Supports cyclic input and output block transfer
- Supports reading of a status register in each Modbus instrument
- Supports transparent Read/Write services for configuration of Modbus devices
- Two connections are supported for acyclic configuration traffic
- Powered from 18V 30 V instrument power
- The maximum supply current is 58 mA
- -40°C to 85°C operation range
- Slide/DIP switches for bus terminations and address setting
- Profibus DP-V0 and DP-V1 configuration services supported
- NAMUR NE 107 diagnostic supported
- Connects up to 4 Modbus RTU Slave instruments (RS-485)
- Change address function is supported

The specific properties of T511

- Interfaces up to four Modbus RTU devices to Profibus DP (DP)
- Automatic Profibus baud rate detection
- All Profibus data rates supported

The specific properties of T510

• Interfaces up to four Modbus RTU devices to Profibus PA (PA)

The instrument interface:

Protocol:

• Modbus RTU

Physical interfaces:

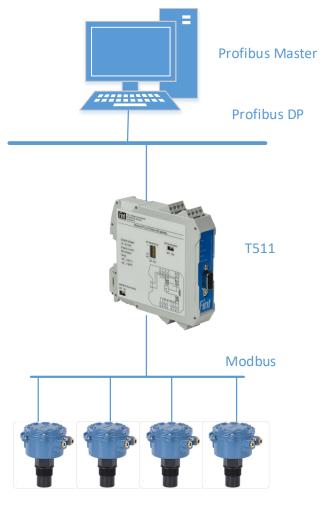
• RS 485

1. T511

1.1. Functional Description

The T511 is a Profibus DP compliant DIN rail mountable gateway for connecting Modbus RTU instruments (Modbus slaves) to DP. See Figure 1. Applying the T511 enables legacy instruments with a Modbus RTU interface to connect to a Profibus DP network.

Figure 1. The T511


Up to four Modbus instruments can be connected through one T511 module. This is illustrated in **Figure** *2*

•

Page 5

Instruments, max 4

Figure 2 The T511 device in a typical application

The T511 is intended for installation on a DIN rail and within a cabinet. It is powered from an 18 - 30 VDC supply. A functional diagram is shown in Figure 3. Figure 3

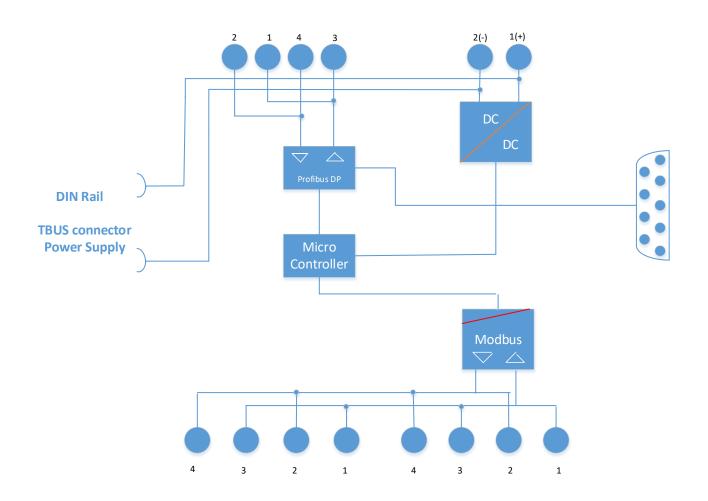


Figure 3. Functional Diagram

Page 6

1.2. Installation

The T511 is designed for being mounted in a cabinet on a DIN rail.

1.3. Electrical Connections

The T511 contains 4 pluggable screw terminals.

The T511 shall use the connector pinout as shown in Table 1

Connector		Pin	Pin Comment		
	Upper	1	Positive supply to T511		
PWR	Front	2	Negative supply to T511		
PWK		3	No Connection		
		4	No Connection		
	Upper	1	DP + B		
חת		2	DP - A		
DP		3	DP + B		
		4	DP - A		
	Lower	1	MODBUS Device 1 – Signal A		
Madhua Can 1	Front	2	MODBUS Device 1 – Signal B		
Modbus Con1		3	MODBUS Device 2 – Signal A		
		4	MODBUS Device 2 – Signal B		
	Lower	1	MODBUS Device 3 – Signal A		
Modbus Con2		2	MODBUS Device 3 – Signal B		
Moddus Con2		3	MODBUS Device 4 – Signal A		
		4	MODBUS Device 4 – Signal B		
DIN clip		-	PE connection for EMC (see Figure 5)		
		1	Positive supply to T511 (pin 1 is at top of the		
TBUS		1	TBUS connector		
		2	Negative supply to T511		

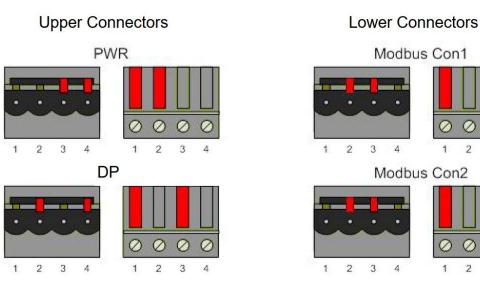

Table 1. Connector Arrangement Table

Figure 4 The TBUS connector

White Series

Figure 5 Connect

or Keying

T511 supports a Profibus DSUB connector with the pin-out shown in Table 2.

Connection	Pin	Signal Type	Description
	No		
	1	NC	
	2	NC	
Profibus B	3	RS485	Signal connection - DP+
	4	NC	
	5	GND	Profibus Termination GND
	6	VCC	
	7	NC	
Profibus A	8	RS485	Signal Connection – DP-
	9	NC	

Table 2 Profibus DSUB Connector Arrangement Table

1.4. Slide switches and DIP switches

1.4.1. Modbus termination

The RS485 Modbus line may be terminated in the T511. Whether to terminate is selected by a slide switch as indicated in Figure 6. There is one terminator serving all the four Modbus instruments. Internally they are connected together. The terminator terminates all four instruments.

White Series

0

3

0

3 4

1.4.2. DP termination

The Profibus lines may be terminated in the T511. Whether to terminate is selected by a slide switch as indicated in Figure 6.

1.4.3. DIP switches

The Profibus address can be set using DIP switches as indicated in Figure 6.

1.4.4. Programming utility

Behind the panel on the top of the device there is a USB Connector for configuration of the T511 from a PC using the utility T51x Configurator, provided by Fint. T511 firmware upgrade is also possible through this connector. See Figure 6.

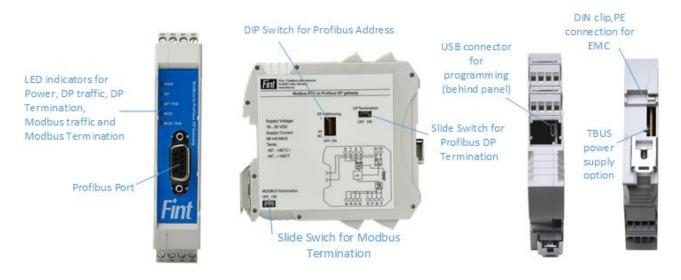


Figure 6 Front and Side Label mounted on T511, showing the functions

1.5. Power, Termination and Diagnostic LEDs

There are five double LEDs on the front. One for Power ON, One for Modbus Termination ON/OFF, one for DP Termination ON/OFF, one for the Modbus communication and one for the DP communication. The communication LEDs are bicolor. One color is blinking on request telegrams and the other on responding telegrams. A slow blink in one of the Modbus LED indicates that there is no Modbus communication. The blinking frequency is determined by the configured time-out time on Modbus.

1.6. Setting Profibus address

The T511 is delivered from factory with address 126. To set the device in operation, the address has to be moved to the operational range 1-125.

The address can be set using the DIP switches or through Profibus using the Set Address command.

If a legal address is set on the DIP switches, the DIP switches determine the address. The coding on the switches is binary.

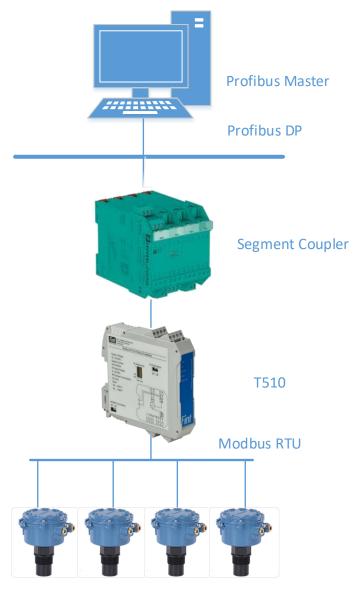
If the address switches are set to address 126 (or higher), address setting can be performed using the Profibus command, (Set Address).

Page

2. T510

2.1. Functional Description

The T510 is a Profibus PA compliant DIN rail mountable gateway for connecting Modbus RTU instruments (Modbus slaves) to PA. Applying the T510 enables legacy instruments with a Modbus RTU interface to connect to a Profibus PA network.


Figure 7 The T510

Up to four Modbus instruments can be connected through one T510 module.

•

FIELDBUS INTERNATIONAL AS

Instruments, max 4

Figure 8 The T510 device in a typical application

The T510 is intended for installation on a DIN rail and within a cabinet. It is powered from an 18 - 30 VDC supply.

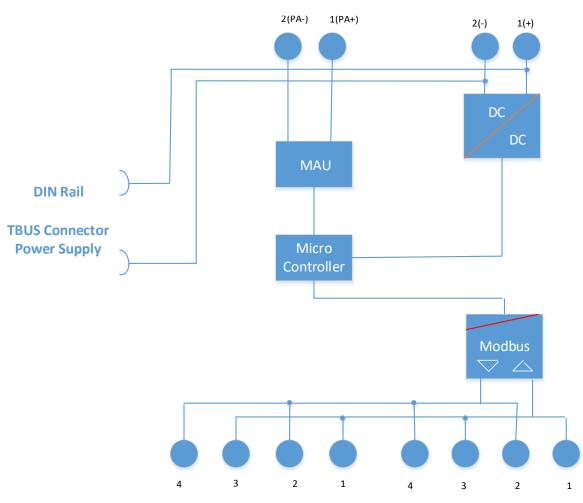


Figure 9 - Functional Diagram

2.2. Installation

The T510 is designed for being mounted in a cabinet on a DIN rail.

2.3. Electrical Connections

The T510 contains 4 pluggable screw terminals.

The T510 shall use the connector pinout as shown in Table 3:

Connector		Pin	Comment		
	Upper	1	Positive supply to T510		
PWR	Front	ont 2 Negative supply to T510			
F W K		3	No Connection		
		4	No Connection		
	Upper	1	PA +		
РА		2	PA -		
PA		3	No Connection		
		4	No Connection		
	Lower	1	MODBUS Device 1 – Signal A		
Modbus Con1	Front	2	MODBUS Device 1 – Signal B		
Modebus Coll1		3	MODBUS Device 2 – Signal A		
		4	MODBUS Device 2 – Signal B		
	Lower	1	MODBUS Device 3 – Signal A		
Modbus Con2		2	MODBUS Device 3 – Signal B		
Modous Coll2		3	MODBUS Device 4 – Signal A		
		4	MODBUS Device 4 – Signal B		
DIN clip		-	PE connection for EMC (see Figure 12)		
TBUS	1		Positive supply to T510 (pin 1 is at top of the		
		1	TBUS connector		
		2	Negative supply to T510		

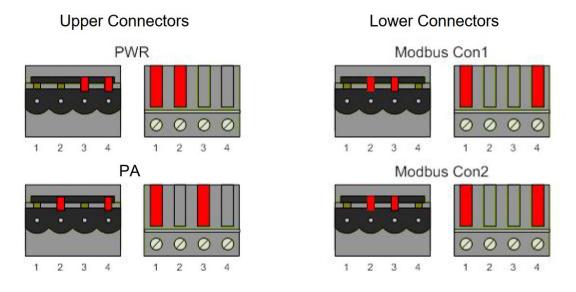

Table 3 Connector Arrangement Table

Figure 10 The TBUS connector

White Series

Figure 11 Connector Keying

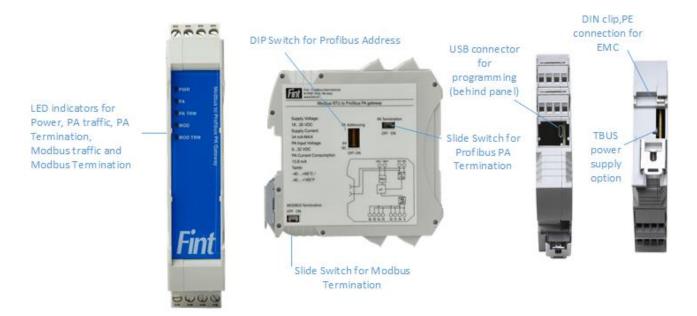
2.4. Slide switches and DIP switches

2.4.1. Modbus termination

The RS485 Modbus line may be terminated in the T510. Whether to terminate is selected by a slide switch as indicated in Figure 12. There is one terminator serving all the four Modbus instruments. Internally they are connected together. The terminator terminates all four instruments.

2.4.2. PA termination

The Profibus lines may be terminated in the T510. Whether to terminate is selected by a slide switch as indicated in Figure 12.


2.4.3. DIP switches

The Profibus address can be set using DIP switches as indicated in Figure 12.

2.4.4. Programming utility

Behind the panel on the top of the device there is a USB Connector for configuration of the T510 from a PC using the utility T51x Configurator. T510 firmware upgrade is also possible through this connector. See Figure 12.

2.5. Power, Termination and Diagnostic LEDs

There are five double LEDs on the front. One for Power ON, One for Modbus Termination ON/OFF, one for PA Termination ON/OFF, one for the Modbus communication and one for the PA communication. The communication LEDs are bicolor. One color is blinking on request telegrams and the other on responding telegrams. A slow blink in one of the Modbus LED indicates that there is no Modbus communication. The blinking frequency is determined by the configured time-out time on Modbus.

2.6. Setting Profibus address

The T510 is delivered from factory with address 126. To set the device in operation, the address has to be moved to the operational range 1-125.

The address can be set using the DIP switches or through Profibus using the Set Address command.

If a legal address is set on the DIP switches, the DIP switches determine the address. The coding on the switches is binary.

If the address switches are set to address 126 (or higher), address setting can be performed using the Profibus command, (Set_Address).

3. GSD FILES

3.1. GSD file, T51x

The T511 supports a manufacturer and a profile Ident No:

	Ident No	GSD file
Profile	9703	pa139703.gsd
Manufacturer	A004	T511a004.gsd

The T510 supports a manufacturer and a profile Ident No:

	Ident No	GSD file
Profile	9703	pa139703.gsd
Manufacturer	A002	T510a002.gsd

Both manufacturer GSD files support the following configurations:

Configurations	Format	No of bytes	Comment
PV channel 1	Float + status	Five bytes	
PV channel 2	Float + status	Five bytes	
PV channel 3	Float + status	Five bytes	
PV channel 4	Float + status	Five bytes	
Data block Input Ch1	1, 2, 4, 8 or 16 registers	2-32 bytes	=< than configuration in
			the TB
Data block Input Ch2	1, 2, 4, 8 or 16 registers	2-32 bytes	=< than configuration in
			the TB
Data block Input Ch3	1, 2, 4, 8 or 16 registers	2-32 bytes	=< than configuration in
			the TB
Data block Input Ch4	1, 2, 4, 8 or 16 registers	2-32 bytes	=< than configuration in
			the TB
Data block Output Ch1	1, 2, or 4 registers	2-8 bytes	=< than configuration in
			the TB
Data block Output Ch2	1, 2, or 4 registers	2-8 bytes	=< than configuration in
			the TB
Data block Output Ch3	1, 2, or 4 registers	2-8 bytes	=< than configuration in
			the TB
Data block Output Ch4	1, 2, or 4 registers	2-8 bytes	=< than configuration in
			the TB

4. MECHANICAL DIMENSIONS OF T51x

The mechanical dimensions of the T51x are presented in Figure 13.

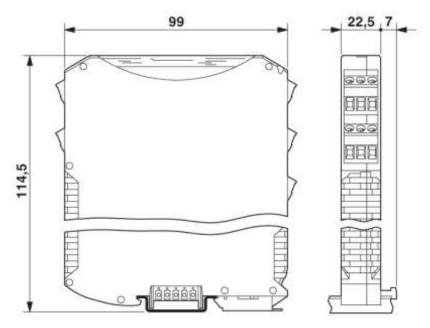


Figure 13 – ME MAX Dimensions

5. OPERATION PRINCIPLE OF T51x

5.1. Connecting Modbus devices

The T51x is a protocol converter, to allow legacy Modbus RTU devices to communicate on a Profibus network (PA or DP).

Four channels are supported. The source of each channel is defined by a Modbus Device Address. Up to four Modbus devices may be connected. This implies four different Modbus addresses. The instruments are electrically interconnected.

The channels may be assigned to the same Modbus address. This will allow more information to be interchanged with one Modbus instrument.

NOTE: Set-up can only be performed when the Channels are in Out of Service mode.

Each Channel supports five types of traffic, transfer of measurement(s) (PV), transfer of status/diagnostic information, transferring a block of input Modbus registers to the cyclic data exchange, transferring output data to a block of Modbus registers and Modbus instrument read/write services. The principle diagram for the communication is shown in Figure 16.

The PV, the registers blocks, the status information and the configuration data can be located anywhere within the Modbus Register map. In order for the T51x to find the data, it must be configured. The configuration is done through the Profibus DP interface. The Profibus DP read and write services are used to configure the Modbus channels.

The device parameters are organized in a Block structure consisting of a Physical Block (PB), Function Blocks (FBs) and a Transducer Block (TB). There are standard parameters defined for all these three Block categories.

The PB is used to describe the device's identity in the field, such as name, manufacturer and serial number. The common Modbus parameters like baud rate, parity and number of stop bits are also located in the PB (see Chapter 5.2). There are no input or output parameters in the PB. There is one PB for each device.

The TB contains the setup parameters required to establish the Modbus communication for each channel.

The Modbus communication is configured independently for each channel. The setup is performed using read and write services, by reading and writing to indexes in the TBs. Fint provides a DD

package that allows the configuration to be done from a DD based Host, like Simatic PDM from Siemens.

The configurator, T51x Configurator, provided by Fint can also be used. This is a PC program that can connect via USB directly to the device through the microUSB connector beneath the blind plug on the T51x. See Figure 6 and Figure 12.

5.2. Setting up the Modbus

Parameter Value Comment Modbus baud rate 9 600. 19 200. 38 400, 57 600. 115 200 Kbits/s # stop bits 1 or 2 (1 is default) Modbus Parity 0 = Odd parity1= Even parity 2 = No parity0 = Normal byte orderCRC byte order 1 = Reverse byte order Timeout for Read 0 - x msTime-out on reading dynamic variables Timeout for Write Time-out on writing dynamic 0 - x ms variables Target Poll Cycle Time In ms Preferred update rate of reading Dynamic variables. Real Poll Cycle Time The measured update rate In ms **Output Update Period** 2000 - ms The highest possible output update rate, limited upwards to 5 Hz Time A configurable delay to allow a **Delay Between Polls** In ms Modbus slave to prepare itself to receive the next request

The Modbus setup is generic for the four channels. It is set-up in the Physical Block, PB.

Table 4 The Modbus set-up parameters

Note! If Delay Between Polls is set short or 0 ms, please verify that the slave device has deactivated its RTS signal before next request. If the request comes before RTS is turned off, the T51x will not detect the response.

Mode Modbus Setup				
Baud Rate: 1200 bit/s ⊻	1	Parity:	No parity 🔷 💌	10
Stop Bits: 1 bit 💌	1	CRC Byte Order:	Normal 🔷 💌	1 0
Timeout for Read: 1	🚺 ms	Timeout for Write:	1	🚺 ms
Target Poll Cycle Time: 1	🚺 ms	Real Poll Cycle Time:	1	🚺 ms
Output Update Period Time: 200	🚺 ms			
Delay Between Polls:			1	🚺 ms
-				
Transfer Messages			⊳ _	Close

Figure 14 shows how the set-up Window appears applying the PDM.

Figure 14 Set-up window for Modbus

5.3. Channel communication services

For each of the four channels there is a set-up record.

The Modbus address is configured per channel. This implies that the PVs may reside in four different instruments (four different Modbus addresses). They may also be located in the same instrument. The menu shown in Figure 15, allows the user to configure Modbus address and TAG name for the connected instrument. The mode handling is used to control the configuration of the Channel. The channel needs to be in Out of Service mode in order to allow the channel parameterization.

T511 - Channel 1 (No communication)						
Ch1						
Target Mode:	TAG:					
Actual Mode:	Modbus Address:					
Transfer	Messages	Close				

Figure 15 Channel control menu for the T51x

22

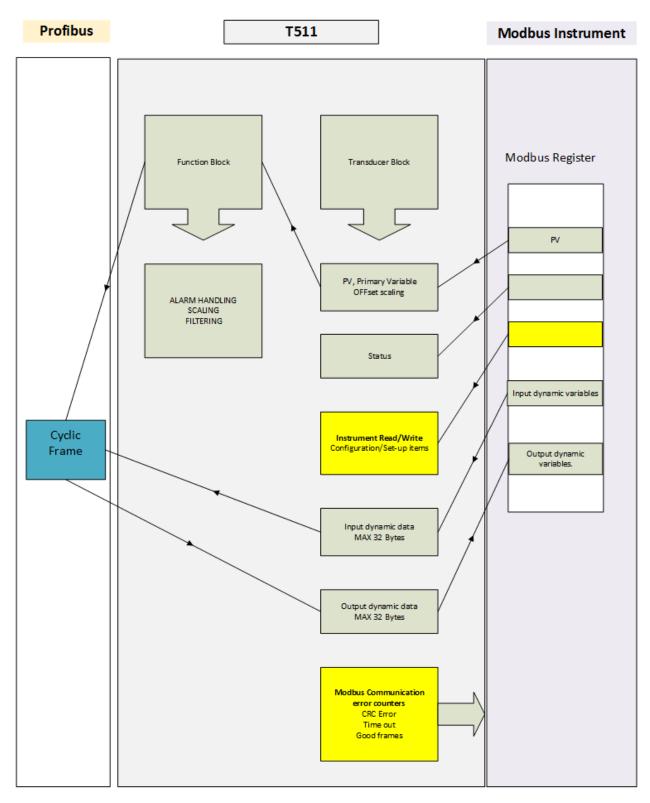


Figure 16 Channel communication services

5.3.1. Set-up of PV

The T51x can support up to 4 channels. Figure 17 shows the connection between the PV in the Modbus instrument and the T51x.

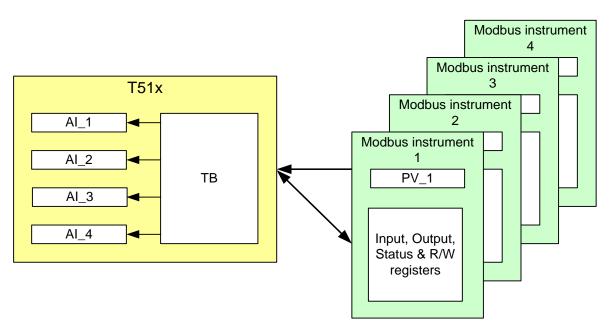


Figure 17 PV, from Modbus to T51x

Each channel supports one PV (Primary Variable). The PV is processed through an Analog Input Function Block (AI FB).

The PV is read from a Holding or Input register in the Modbus instrument. The register address and the Function Code to be used shall be set-up by the user.

The T511 supports a variety of data types and related byte ordering. The variable needs to be converted into the IEEE 754 float format in order to be processed through an AI FB. The data type parameter allows the user to select the right data type and byte ordering.

The PV type defines the data type and the byte ordering of the dynamic variable stored in the Modbus device. T511 needs this information in order to convert the variable to an IEEE format float used by PI. The PV may be defined as float, integer or unsigned integer in the Modus instrument. T511 assumes that there are two bytes per register, so a float will be located in two adjacent registers. An integer will be located in one register.

The byte ordering is defined in the type. The byte is numbered so the Most Significant byte has the higher number. This is illustrated in Table 5.

Page 23

Data Type	Byte and nibble	PV Type
Modbus	order	Code
Float	4321	0
Float	2143	1
Float	3412	2
Float	1234	3
Short Integer	21	4
Short Integer	12	5
Unsigned short	21	6
Unsigned short	12	7
Long Integer	4321	8
Long Integer	2143	9
Long Integer	3412	10
Long Integer	1234	11
Long unsigned	4321	12
Long unsigned	2143	13
Long unsigned	3412	14
Long unsigned	1234	15

Table 5 Byte order for PV

If the PV is stored as a float or long in the Modbus device, T51x assumes that two consecutive registers are used, as illustrated in Figure 18. The Register address pointer in T51x will point to the lower address.

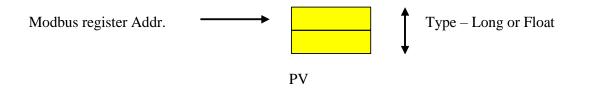


Figure 18 Storage when the PV is a float or Long

The scaling factors allow offset and gain to be adjusted before the variables are processed further. If an Integer value is stored in a fixed format with one decimal, the scaling factor (gain) must be specified to "0,1" to allow T51x to interpret the value correctly.

The PV unit may be specified by the user. There is no unit conversion in the T51x module. The PV unit is just for information purposes.

T51x adds a status byte to the PV. The status provides quality information about the measurement.

The configuration widow for PV as it appears in the PDM tool, is shown in Figure 19

W	
Ch1 PV Instrument Status Instrument Setup Input Data Block Output Data Block	
PV Activate: Activated	✓ 10
Primary Variable:	0.0 🚺 %
PV Unit: 🔀	✓ 10
PV Scaling:	1.0 🚛
PV Offset:	1.0 🚛
Sensor Value:	0.0 🚺
PV Modbus Register:	0 10
PV Data Type: Float - byte order 4 3 2 1	✓ 1□
PV Function Code: Holding register FC3	✓ 10
Transfer Messages •	Close

Figure 19 Configuration window in PDM

5.3.2. Diagnosis

5.3.2.1. Diagnosis information from the Modbus Instrument

For each channel the user can fetch four flags from the Modbus device. The flag must be located in one Modbus register which is denoted the Status register.

The operation on the Status register is defined by its Modbus register address and Function Code. A Status register can either be an Input or a Holding register. The four flags to be used in the register are selected using a Status Mask. The Status Mask is configured by the user. This is illustrated in Figure 20.

Set-up is only allowed when the channel is in Out of Service mode.

The four selected flags are transferred to the NAMUR NE107 structure in the same order as stored in the status register.

Ch1 PV Instrument Status Instrument Setup Input Data	Block Output Data Block	
Instrument Status Activate: Activated		~ 🤌
Status Register Address:	655	38 1
Status Register Mask: Bit 0 3 Bit 1 Bit 2 Bit 3 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 12 Bit 13 W Bit 13 Bit 13 Bit 15	 Status : Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 	10
Status register FC: Holding register FC3		∽ ‡

Figure 20 Set-up of Status Flag reading from Modbus Instruments

5.3.2.2. Modbus communication diagnostics

The Modbus communication is supervised. If the communication on one channel is unstable, a warning flag is set, if it stops working, an error flag is set.

If the Modbus registers are erroneously set, the Modbus device is returning Error Codes and the Configuration Error Flag is set.

Output traffic has its separate diagnosis flags, one per channel. If the device is not responding, the corresponding flag is set.

The output messages are sent to the device at the frequency sent by the PLC. The update frequency is, however, upwards limited to 5 Hz. If the Modbus devices are not responding and the time-out time is configured to be too long, the output is saturated, and the Configuration Error flag is set.

5.3.2.3. Diagnosis flags

The NAMUR NE107 Diagnosis structure contains:

- Modbus Device Status Flags
- Modbus Device Communication Errors
- Modbus Device Communication Warning
- Modbus Device Configuration Error.
- Modbus Output Errors

An overview of the Error Diagnosis is presented in Table 6.

Error flags		Comments
Channel flags	4 flags per channels	Configurable in the Channel
Modbus Input Com	1 Error-bit per channel	Communication lost
	1 Warning bit per channel	Communication comes and
		goes
Config error	The set-up of T51x is not	The instrument is present but
	correct	returns error code on one or
		more requests
Schedule saturated	The set-up of outputs from	Long time-out times prohibit
	T51x is not correct	the schedule to be met. Inputs
		may not have been read.
Modbus Output Com	1 Error bit per channel. Set if	
	Modbus slave does not respond	
	on a write	

Table 6 Diagnosis flags

Map and mask parameters determine how these flags shall be NAMUR flags, Fault, Function Check Maintenance required and Out of spec. This is described in Figure 21.

ag Flag			Failure Flag Mask			Maintenance Flag M	isk -		Function Check Flag	Mask		Out of Spec Flag Mask	
Channel 4:	Channel 4 Flag(3) Channel 4 Flag(2) Channel 4 Flag(1)	1	Channel 4:	Channel 4 Mask(3) A Channel 4 Mask(2) Channel 4 Mask(1)	1	Channel 4	Channel 4 Mask(3) Channel 4 Mask(2) Channel 4 Mask(1)	1	Channel 4:	Channel 4 Mask(3) Channel 4 Mask(2) Channel 4 Mask(1) Channel 4 Mask(1)	10	Channel 4:	Channel 4 Mask(3) Channel 4 Mask(2) Channel 4 Mask(1)
Channel 3:	Channel 3 Flag(3) Channel 3 Flag(2) Channel 3 Flag(1) Channel 3 Flag(0)	1	Channel 3:	Channel 3 Mask(3) Channel 3 Mask(2) Channel 3 Mask(1) Channel 3 Mask(0)	1	Channel 3	Channel 3 Mask(3) Channel 3 Mask(2) Channel 3 Mask(1) Channel 3 Mask(0)	10	Channel 3:	Channel 3 Mask(3) Channel 3 Mask(2) Channel 3 Mask(1) Channel 3 Mask(0)	10	Channel 3:	Channel 3 Mask(3) Channel 3 Mask(2) Channel 3 Mask(1) Channel 3 Mask(0)
Channel 2:	Channel 2 Flag(3) Channel 2 Flag(2) Channel 2 Flag(1) Channel 2 Flag(0)	1	Channel 2:	Channel 2 Mask(3) Channel 2 Mask(2) Channel 2 Mask(1) Channel 2 Mask(0)	10	Channel 2	Channel 2 Mask(3) Channel 2 Mask(2) Channel 2 Mask(1) Channel 2 Mask(0)	10	Channel 2:	Channel 2 Mask(3) Channel 2 Mask(2) Channel 2 Mask(1) Channel 2 Mask(0)	10	Channel 2:	Channel 2 Mask(3) Channel 2 Mask(2) Channel 2 Mask(1) Channel 2 Mask(0)
	Channel 1 Flag(3) Channel 1 Flag(2) Channel 1 Flag(1) Channel 1 Flag(0)	10	Channel 1:	Channel 1 Mask(3) Channel 1 Mask(2) Channel 1 Mask(1) Channel 1 Mask(0)	10	Channel 1:	Channel 1 Mask(3) Channel 1 Mask(2) Channel 1 Mask(1) Channel 1 Mask(0)	1	Channel 1:	Channel 1 Mask(3) Channel 1 Mask(2) Channel 1 Mask(1) Channel 1 Mask(0)	1	Channel 1:	Channel 1 Mask(3) Channel 1 Mask(2) Channel 1 Mask(1) Channel 1 Mask(0)
fodbus Input Com	Channel 4 Com error Channel 3 Com error Channel 2 Com error Channel 1 Com error Channel 4 Com warning Channel 4 Com warning Channel 3 Com warning Channel 2 Com warning Channel 1 Com warning Channel 1 Com warning		Modbus Com	Channel 4 Com error Channel 3 Com error Channel 2 Com error Channel 1 Com error Channel 4 Com warning Channel 3 Com warning Channel 2 Com warning Channel 1 Com warning		Modbus Com	Channel 4 Com error Channel 3 Com error Channel 2 Com error Channel 1 Com error Channel 4 Com warning Channel 3 Com warning Channel 2 Com warning Channel 1 Com warning	10	Modbus Com	Channel 4 Com error Channel 3 Com error Channel 2 Com error Channel 1 Com error Channel 4 Com warring Channel 3 Com warring Channel 2 Com warring Channel 1 Com warring	10	Modbus Com:	Channel 4 Com error Channel 3 Com error Channel 2 Com error Channel 1 Com error Channel 4 Com warr Channel 3 Com warr Channel 2 Com warr Channel 1 Com war
Other alarms:	 Internal fault Config error 	t	Other Alarms:	Config Error	1 0	Other Alarms	Config Error	1	Other Alarms:	Internal Fault Config Error	1 0		Internal Fault Config Error
adbus Output Com:	Channel 4 Output error Channel 3 Output error Channel 2 Output error Channel 1 Output error	1	Modbus Output Com	Channel 4 Output error Channel 3 Output error Channel 2 Output error Channel 1 Output error	10	Modbus Output Com	Channel 4 Output error Channel 3 Output error Channel 2 Output error Channel 1 Output error	10	Modbus Output Com	Channel 4 Output error Channel 3 Output error Channel 2 Output error Channel 1 Output error	10	Modbus Output Com	Channel 4 Output er Channel 3 Output er Channel 2 Output er Channel 1 Output er

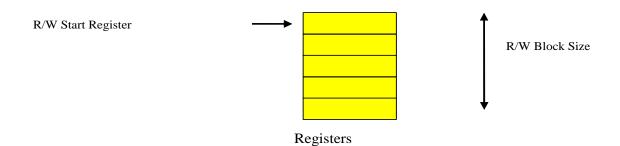
Figure 21 Diagnosis flags and NAMUR masks

White Series ©Fieldbus International AS

Page 28

5.3.3. Transparent Read/Write services.

For each channel there is a block of up to ten consecutive Modbus Read/Write Holding registers. They can be reached from the Profibus control system. This block of up to ten registers is characterized with a start address (The lower address of the block) and number of registers. They start at a configured Modbus register. The number of registers defines how many of the ten registers that is used. Figure 22 illustrates the behavior, and Figure 23 shows the set-up Window using the PDM tool.


The content of these registers will be written to the Modbus device when the user is writing to the corresponding indexes of the T51x. This service is only supported when the block is in Out of Service mode.

Read-back of the parameters takes place when the user is requesting an Update.

Table 7 shows which Function Codes that is used for the transparent Read/Write services.

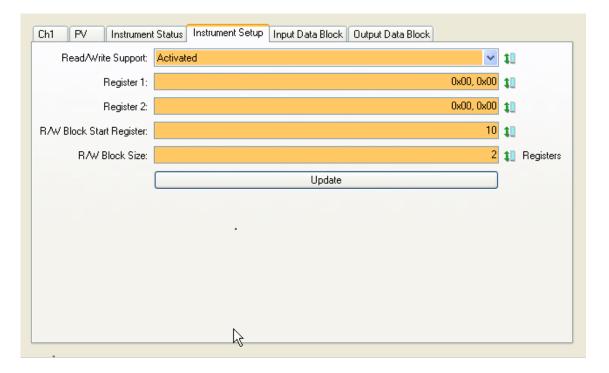

Modbus Operation	Function Code
Read single and multiple registers	3
Write single register	6
Write multiple registers	16

Table 7 Function code usage

Figure 23 Read/write configuration

5.3.4. Input data block

Each channel support transparent transfer of a block of registers on the Cyclic data exchange frame.

The function needs to be activated to be used. The start address of the block, how many registers and whether Function Code 3 or 4 shall be used, can be configured. The Input register parameters are presented in Table 8.

Figure 24 illustrates the data block, and Figure 25 shows the set-up Window using the PDM tool.

Block Start Register	→		k
			Block size
			7
	l		
	D	ataBlock In	

Figure 24 Data input register block

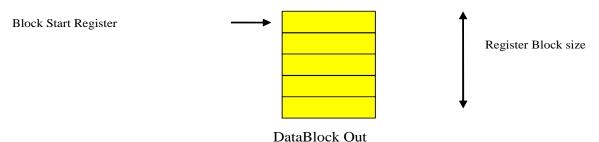
Ch1 PV Instrument	Status Instrument Setup Input Data Block Output Data Block	
Data Block In:	0x00, 0	
Block Start Register:	65535 👔	
Block Size:	One register 💙 🕄	
Input Register FC:	Holding register FC3 🛛 🛃 🚺	
Input Data Block Activate:	Activated 🗸 🧭	
	~~	

Figure 25 Configuration of the Input register block

Parameters	Value
Function code	3 or 4 (Read Holding or Input
	register)
Number of registers	1,2, 4, 8 or 16
Start address	0 - 65534

Table 8 Input register

5.3.5. Output registers


Each channel supports transparent transfer of a data block to the Modbus device from the PLC.

The Function Code used is 6 for single register and 16 for multi registers. The Output register parameters are presented in Table 9.

NB! Only data sent in the cyclic data exchange frame is sent on Modbus. The data sent to the Modbus device is always the data sent from the PLC.

Figure 26 illustrates the data block, and Figure 27 shows the set-up Window using the PDM tool

Figure 26 Data output register block

The data block is updated in the same frequency as the output on Profibus, but the maximum update rate is 5 Hz.

Ch1 PV Instrument 9	itatus Instrument Setup Input Data Block Output Data Block
Data Block Out:	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 1
Block Start Register:	65535 👔
Register Block Size:	One register 💙 🕄
Output Data Block Activate:	Activated 🗸 🖉
	N
Transfer Message	s Close

Figure 27 Configuration of Output register block

Parameters	Value
Function code	6 or 0x10
	(Write Holding register)
Number of registers	1,2 or 4
Start address	0 - 65534
Maximum update rate	5 Hz

Table 9 Output register block

6. APPENDIX A: TECHNICAL SPECIFICATIONS

Mechanical:

Size	114,5 * 99 mm
Mounting	DIN rail
Module width	23,2 mm
Weight	126 gram
Housing	Plastic Polyamid, IP-20 protection
DIP Switch	Profibus address (1-125)
Slide Switch	DP Terminator
Slide Switch	Modbus Terminator
Electrical:	
Supply voltage	1830 VDC
Supply current	58 mA MAX
Supply cultone	
Environmental:	
Operating temperature range	-40 °C to + 85 °C
Shock	IEC 600068-2-27
Vibration resistance	IEC 600068-2-6
Protocols and Ports:	
Number of DP ports	1
Number of Modbus ports	4
PA protocol profile	PA, 3.02
Modbus protocol	Modbus RTU, Master
Modbus serial standard	RS-485
T511 specific:	0.511.6
Profibus Baud rates	9.6 kb/s
	19,2 kb/s
	45,45 kb/s
	93,75 kb/s
	187,5 kb/s
	500 kb/s
	1,5 Mb/s

3 Mb/s 6 Mb/s 12 Mb/s

7. APPENDIX B: SCHEDULE

A Modbus frame will be defined as complete when there has been silence for 3.5 characters. If an instrument does not respond within the configured parameter, time-out will occur and the T511 will proceed with the next request.

The T51x shall support Free Running and Fixed Schedule modes.

1) Free running

When the response is received from one instrument, the next request is sent.

When all different messages are read, one poll cycle is finished and the next one begins.

2) Fixed schedule

Only the start of a poll cycle is scheduled. The different frames in one cycle are still executed at "best effort". A default value will be provided.

If the configured schedule is too short, it will degrade to the fastest poll cycle possible.

The "Free schedule" mode with 1 second update rate will be default.

Figure 28 illustrates the behavior.

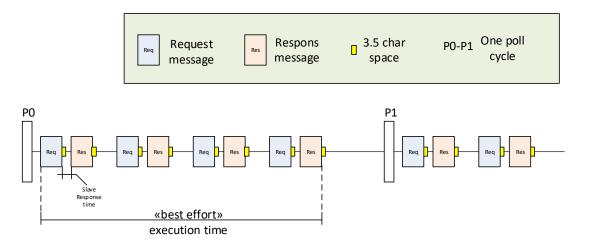


Figure 28 Modbus Poll Cycle, Fixed Schedule Mode

The 3.5-character silence after each message will be used for baud rates up to 19200 bits/s. For higher baud rates a fixed time of 1.75 ms will be used (as recommended in the Modbus specification).

8. APPENDIX C: CONFIGURATION CODES

Configurations	Configuration Code	No of Modbus registers	No of bytes
Data block Input	D0	1	2
Data block Input	D1	2	4
Data block Input	D3	4	8
Data block Input	D7	8	16
Data block Input	DF	16	32
Data block Output	EO	1	2
Data block Output	E1	2	4
Data block Output	E3	4	8

Table 10 Configuration cyclic data exchange

Table 10 shows an overview of which configurations that are supported for cyclic data-exchange for transferring blocks of dynamic data. These configurations will be found in the gsd file.